MOMENTS FORMULATION OF SOME STATISTICAL
PROBLEMS IN ELASTICITY

PMM Vol. 31, No. 4, 1967, pp. 670-677

V.A. LOMAKIN
(Moscow)

(Received November 13, 1966)

Considered herein are some problems in elasticity with random external loads. Boundary
value problem formulations are obtained invelving moments of arbitrary order for the random
tensor fields of stresses and displacements. For these problems, proof is given of the un-
iqueness theorem and of a minimum principle similar to the principle of minimum potential
energy of classical elasticity,

By way of an example, the solution is obtained to the boundary value problem for second
order moments of the stress tensor in the half~plane x 3,0 in the presence of normal and
shearing loads on the boundary x = 0, the loads being statistically homogeneous, random
functions of y.

1. We consider two problems in elasticity: the displacement problem when the body for-
ces f; and surface loads ¢, are given

01.‘15 / 033] = — fi’ Tyl = ¢, (.’l's = S), Ty == Cijpl Ow,, / 83:1 (1.1
and the stress problem when, in addition to the forces f; and g,, the incompatibility tensor
Tk is given

0t [0z = —f;, Tnj=gq; (z:=3)
azek
&iikCimn 'aTc,-aT":l = Ny, Ckm = SkmiiTis (1.2)

Here 7,, is the stress tensor; e,, is the strain tensor; w, is the displacement vector;
ikt Sijx1 8re the tensors defining the elastic properties of the medium; n; is the normal to
the body surface s; €4k is the unit, antisymmetric, pseadotensor.

Let f;, g; and 73;; be random functions of the coordinates x,, given by their mean values
and moments of various orders [1]. In view of the ordinary (with respect to w; and 7; } and
statistical (the absence of products of the random quantities) linearity of all Egs. in (1.1)
and (1.2), we may obtain separate boundary value problems for the mean values and moments
of any order [ 2].

For the mean values, the problem statements are the same as (1.1) and (1.2), with the
random functions replaced by their mean values. Such equations are also obtained for the
deviations from the mean values.

For the moments of ordern {n = 1, 2, 3,...)

Phiciy = 0 (@51) - Vi @) Pidieiy iy = Puiy @) -+ Pi i, (@7 (13)
Yixj....in in = <Ti,j. (xsl) e Tinjn (xs'n)>’ V= w;— (W,
Pij =T, — (T;, Tij = €5 — (&)
writing each of the Egs. in (1.1) and (1.2) for the deviations at the points M x5, k=1,

essy 1), multiplying and taking the means, we obtain, respectively, the boundary value prob=
lems (1.4), (1.5) and (1.4), (1.6)
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Misty.ig ty, = My (26" - R ;n (x>

Here, f, ot Uy and Mgty +** Inlp 8T€ the moments of the forces f;, ¢; and of the
incompatibility tensor 7),;. Here and hereinafter the angular brackets denote statistical means
of the corresponding quantities while the primed quantities are the deviations from the
means.

In connection with the boundary value problems (1.4), (1.5) and (1.4), (1.6), we note the
following:

1) If, instead of (1.1), we consider the problem of given random displacements ;(x ) on
the boundary s, then the corresponding boundary value problem for the moments of order n
will contain the first group of relations (1.4), relations (1.5) and the boundary conditions

n n
Uil...in -——\pi....in (wsls o0y Ty )s xsli ooy Xy =s

¢i""in = <\pinl (xsl) e win, (xsn)> 1.7

2) Suppose that f,, q,, 7, and i, are random functions of position and slowly varying ran-
dom functions of time so that a quasi-static analysis is valid. Then the above mentioned mo-
ments are defined by relations of the form

Vigri, = Uiy (21 1) <+« Vi (26", 1))
where, as before, (1.4) to (1.7} hold.

3) The boundary value problem (1.4), (1.6) includes the quasi-static theory of continuous
dislocations for the case in which the dislocation density tensor has a statistical distribu-
tion. The incompatibility tensor 7;; may be expressed in terms of the dislocation density
tensor a,, by means of the relation [3]

Mg = &;j5 0% / 0
Thus, if the dislocation density @;; is & random tensor field with moments

d’llj;...ln jn = <a'(,:-il (xsl’ tl) vt aln;n (xsn’ tn)>

then the stress moments are defined by problem (1.4), (1.6) with

n

. 9 Dprendy iy,

Moy oigty, = Sadin " Bk, Gz, oz,

4) Other statistical problems in mechanics of deformable solids are reducible to problem
(1.1), (1.2) pamely, viscoelastic problems with random loading (problem (1.1), (1.2) is ob-

tained by Laplace transformation of the desired functions); problems concerning the deforma-



Moments formulation of statistical problems in elasticity 689

tion of nonlinear by elastic and elasto-plastic bodies under the action of random 'loads (by
employing the method of elastic solutions [4]); deformation problems of bodies with random
inhomogeneities and random irregularity on the boundary (in solving these problems by the
method of perturbations [5te 8D).

In all of the indicated cases, the problem of determining the statistical characteristics
of the siress, strain and displacement fields may be viewed in terms of the boundary value
problems (1.4), (1.5) and (1.4), (1.6).

5) The set of moments (1.3) define a multi-point distribution of the random fields [9 and
10], and therefore the set of solutions of boundary value problems (1.4), (1.5) and (1.4),
(1.6) statistically completely defines the fields 7;;, &;;, w;.

2. The moments of the stress and strain tensors are interrelated by
=C, . s C, o X
P i, = Cisdis ik Ve g Uy
— . eee 8. PR 7 F
T}\-lll,,,kn Iy Skl Kplpin 7np“"""n in (2.1)

Let us introduce the potential function ¥V, of nth order moments

Wp

nln i g,

Pi;,...i

By virtue of (2.1), we have the relations

Vv 1 v 1 anvi,...in
n - ? piljnu.‘in jn Ti,]‘,...injn’ n "2_ pi'j""injn oz, 1., 9. "
I In
=1/,n e .
Va 19%4 50,0, Ciintn znTi.j,...in in Tl.'ll,...kn I,
P 1/,3 e .
Va="10 ijih ol Si ity lnpiljl...injnpl.,l..,.kn L
$431..-1, 3 op: - ..
1h an dph]x---lﬂj

n

Let us assume that V,, is a positive-definite form in its argnments. The potential func-
tion will be a homogeneous quadratic form of 6" variables y, ; ...; , ; every coefficient in
the form is a product of elastic constants of the material under consideration with the sum
of the exponents in the product equal to n; the coefficients also contain numerical factors.
Hence, the positive definite character of ¥, may be verified, but this involves an extremely
laborious investigation.

In the case of an isotropic body, for example, for V,, we have

3
Vo =130 10V ppss T M (Viq Tppm Vo Vijos) T 2P Vigg Vg (2.2)
where A and i1 are the Lamé constants. The usual conditions

u >0, 3h +2u >0
guarantee the positive-definiteness of form (2.2).

Thus, let the moment potential ¥, be a positive definite form. Then the uniqueness theo-
rem holds for the boundary value prorialems 1.4), (1.5) and (1.4), (1.6). We will prove it for
(1.4), (1.5).

Consider two solutions

1 . 2 2
Ve Pl s ”k,.(..)k”’ P s
for problem (1.4), (1.5) with the same functions fy ...; , ¢j,... - The difference of these
solutions satisfies the homogeneous differential equations with homogeneous boundary con-
ditions
n
9 Pig,.., 5, —o

1
31']~1 ox in

3

Py,..., 5, (@) - m (7)) =0, z1 ...z "<s (2.3)
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with n
0 v, .
1 11...1n (
=—p,. .,z —T 2.4
V‘n 2 p“]""ln’n or.Y...9z. " )
J1 In

Utilizing (2.4) and applying the Ostrogradskii-Gauss formula to each group of variables
x.k(k = 1""L")' we find

' 3" Piljl-ninjn
2\ - Vndvl"'dvn=—g'"Svilmi ___1—__.dvl...dvn+
7 gz t...0x, "
(v) (v) 7 In
+ S . S pile---in jnnjx (zsl) seeny (zsn) Ul;...indsl' . 'dsn (2.5)

(s)
In view of (2.3), (2.5) may be written as

S. : 'SVndvl' ..dv, =0

(v)
Whence, by virtue of the positive-definiteness of ¥,,, it follows that ¥,, = 0 and
n
4 Vit 0
1 n =
61:51 ce axjn
Thus, the boundary value problem (1.4), (1.5) uniquely determines the moments of the
stresses and strains while the displacements are determined up to the solutions of Eqs.

n
a ;..

0,

Pij..ipi, = 0 Migans, =

--‘ln - 0
n
6xj11 cen ax,-n

For boundary conditions {(1.7), the displacement moments obtained are single-valued.

From the foregoing, it is evident that there exists a clearly defined aralogy between
problems (1.4), (1.5) and (1.4), (1.6) and elasticity problems (1.1), (1.2) with determinate
functions f;, ¢4 7;» which is only natural. This analogy may be extended, and we can prove
for problems (1.4), (1.5) and (1.4), (1.6) a whole series of theorems which are known in elas-
ticity. As an example, we will formulate and prove for problem (1.4), (1.5) the mirimum prin-
ciple which is analogous to the principle of minimum potential energy.

Consider the functional

Walvi.a ] = S S Ve (Vi 5) T (—D)" fit Vi 1dor -+ dvp —
()
_S .Sqi i Vi dsl...dsn (2.6)
Jeee n

“in
(8)

The following minimum principle holds: The functional (2.6), considered as a functional
on the admissible (in the sense of smoothness) moment fields vy, ... v; , attains an absolute
minimum on the real fields satisfying (1.4), (1.5}

We will prove this principle. Let vy e Yy, be real and Vit in T Au,x «esy be arbitrary
admissible displacement moments. Then, since V,, is a homogeneous quadratic form, we have

Va (Ti,jl...in in + AV, 5n) =

v,

=V, (Ti,j,...inin) +Va (ATi,J“...inin) + a7, 5 AV i, (2.7)

‘,""17!7

and, therefore

Wa bty + AVt ) = Walons 1 = Vaiary, o don v, + K
(v)
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K £ S. . -S pilj""injnA'r‘ljl---{nindvl. . .dvn +

(v)
+§ (= 0 s o g done s don =N gy po s cdsa g
L} e 1 *n 3 V&)
(v) (s
Utilizing the relation
n
0 Avy,
Pige.. by 3V A iy = Phiieodyin 50,1,
and transforming the first term in (2.8) in the same manner as before, we obtain
3" p; ; ;
131, .33 n
K== (G — ) Ao s o odon
(v) n n .

. H...n ) — . o
'Jr' S(;)S [pi,j,...in jnn]l (xs ) n.’n (.’ts ) qin...z”] Av‘l"'*ndsl ds" (2.9)
In view of (1.4), (1.5), (2.9) yields K = 0. Hence, if the functions A‘y, Jiuod j 8F€DOL
identically zero, then by virtue of the positive-definiteness of ¥, (2.7) y‘ie‘lds" "

Wl ., + AV ] — Walvi. ] = S . S Va (A'ri,;h...iﬂjn) dvy- - -dv, >0
(®)
which proves the previously stated minimum principle.

3. As an example in solving boundary value problems of the type (1.4), (1.6), consider
the deformation of a half-plane under the action of random loads applied on its boundary.

For the plane problem involving random surface loads g, ¢, the boundary value prob-
lem for the second order stress moments p;),; may be written in the form

VitV =0 (D =<F'(21, y1) F' (22, ¥2)>)

Pt (M) ny (M) =q,  MyM:EL 3,1
Here, g,, are the second order moments of the loads ¢, and g,; L is the boundary; V, 2
is the Laplacian with respect to the point coordinates M, (x, y,j; ® is the second order
moment of the stress function,
In (3.1), the subscripts range over the values 1, 2, The quantities p;,, are given in terms
of the stress function @ by the relations

)] 10 Ho
P = W , Page2 = W , Piz1g = m
i) o Mo
Dnrza == W , Paen1 = W ) Pz = — m
l7gli)] fial0)] il
Pz = — B_—xla y10ya Pamra== — —6:612895263/2 y  Plsss = — W

Consider the deformation problem for the half-plane % 3, 0 under the action of nomal and
shearing loads g, and g,, respectively, which are uncorrelated, statistically homogeneous,
random functions of the y coordinate.

In that case,

qu = au (M) Goz = Q22 M)y Q12 = Gu1 = 0, N=Y2— ¥
The differential equation for ® (x,, x4 1) is then given by
08D liad g4 04 Ho
dr11072 +2 In2dz ot (AD) + W (AAD) +2 a—nT (0x126xz"‘ )

g8 8D
+2 an® (AD) + P =0 (3.2)
where A is the Laplacian with respect to x,, x,, and (for x; = x, = 0) the boundary condi-
tions are
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Pup=qu(M  Pun = g (M Pun = Pan =0 (3.3)
Let gy and g44 be given by the spectral representation
co

9 () = S sy (M) €V,

—00
and let us seek a solution to the problem (3.2), (3.3) in the form
o0
®(er, m )= § U@, 2, 1eHan
—c0
[e]

(3.4)
Pijiy (21, T2, M) = S Vi (B, 73, M) eMdh
—00
Then we obtain a differential equation for U (x,, x,, A) in the form
*u . 4 At _2U 2MAU 4+ AU =0 (3.5)
azlcaxad_Zh 0x,20x92 (AU) + A AAU + 2 0x,20x:2 - A + = .
and the boundary conditions (for 2, = x, = 0)

Tun = sy (M), Torz1 = 8aq (A), Tug = Tz =0 (3.6)
where 7, , are given in terms of U by
AU *xy . 22 au
Tun = , o T = FPRY Tia1g == 97,072
azl U 3
Tige = — A2 dar 0 = A8 Oz = iA B2y,
Taen (210 Ty, A) = Ty (2, 75, — A)

Tienr (T10 X3y A) = Tyyyp (29, 2y,— A)
Tiooz (21, Ty A) = Tya10 (2 2,— A)
The solution of problem (3.5), (3.6) takes the form
U =[a 4 b(x; + z2) |- cxyzy] e MG+
s1(A A si(A) Fsa(M
a=1—l(¢—)-, b=‘l—)\;|_lsl()»), C:l(_)‘}\’%‘Z—(—), 812.“11,82::.8?2
The stress moments (3.4) are given by the relations
Pun =T + (2 + 2) T + 22, (T2 + 1Y)
Pasag = T1° + 470 — (2, + ) (T + 2T,Y) + 2, (T2 + T3
Puata = T — (21 4 2) T2 + zy2, (T2 - T,
Puea = T\° + 2 (T + 2T — 2,7 — 212, (T2 + Td)

(3.7)
Punp = — 4R + R + zz, (R + Ry
Pania = — 2R 4 z Ryt + z, (B! - 2R,Y) — z,z, (R? + Ry?)
Pon (21 T M) == Prage (T2 71, — M)y Pran (T4, Zze M) = piprg (T, 3, — n)
Pizas (21, Zpy M) = Pagia (22, 7, — M)
The expressions for T:‘ and R’,‘ are of the form
(o] [o'e]
Tik =2 S }"ks‘i ()\) cos (xn) e—)\(xwxg)d}h Ri ko 2 S )"ksi (A) sin (A‘ﬂ) e—).(xﬁ-x,)d;“
0 0
(i=1, 2; k=0,_1, 2) (3.8)

Consider two particular cases of the problem under consideration, for which solutions
have been obtained by other methods.
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1) The problem of stress concentration resulting from surface unevenness for the hali-
plane having an uneven boundary x = £Aly), whers € is a small parameter and Aly) is a
stationary random function, and subjected to a tensile stress o in the y direction is reduci-
ble to the problem of a half-plane x ?0 subjected to random shearing loads of intensity
ga=0dA/dy on the boundary x = 0 [11].

Setting s, = 0 and 25 , = @ 2s()), where s (A) is the spectral density of the random func-
tion d A/dy, then the expression for the moment

B(M) = pams | mxmo
which was obtained in [11] by a different method, is found here, with the aid of (8.7) and
{3.8), as
o
B (M) = 4c? S s (A) cos (An) dA
0

2) In [12], the solution is obtained to the problem of a half-plane subjected to the action
of a normal random load with S-correlation (*‘white noise’’ type of load).

Setting g, = const and s, = 0 in (3.7) and (3.8), we obtain the relations which were ob-
tained in%lf&x} by a different method.
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